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Abstract
A general unifying framework for integrable soliton-like systems on time
scales is introduced. The R-matrix formalism is applied to the algebra of δ-
differential operators in terms of which one can construct an infinite hierarchy
of commuting vector fields. The theory is illustrated by two infinite-field
integrable hierarchies on time scales which are �-differential counterparts of
KP and mKP. The difference counterparts of AKNS and Kaup–Broer soliton
systems are constructed as related finite-field restrictions.

PACS number: 02.30.Ik
Mathematics Subject Classification: 37K10, 35Q58

1. Introduction

Integrable systems are widely investigated in (1 + 1) dimensions, where one of the dimensions
stands for the time evolution variable and the other one stands for the space variable. The space
variable is usually considered on continuous intervals, or both on integer values and on R [1]
or on Kq intervals [2, 3]. In order to embed the study of integrable systems into a more general
unifying framework, one of the possible approaches is to construct the integrable systems on
time scales. Here the space variable is considered on any time scale where R, �Z, Kq are
special cases. The first step in this direction was taken in [4], where the Gelfand–Dickey
approach [5, 6] was extended in order to construct integrable nonlinear evolutionary equations
on any time scale. Another unifying approach is to formulate different types of discrete
dynamics on R. Some contribution in this direction was made recently in [7].

The main goal of this work is to present a theory for the systematic construction of (1+1)-
dimensional integrable �-differential systems on time scales in the frame of the R-matrix
formalism. By an integrable system, we mean such a system which has an infinite-hierarchy
of mutually commuting symmetries. The R-matrix formalism is one of the most effective and
systematic methods of constructing integrable systems [8, 9]. This formalism originated from
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the pioneering article [5] by Gelfand and Dickey, who constructed the soliton systems of KdV
type. The crucial point of the R-matrix formalism is that the construction of integrable systems
proceeds from the Lax equations on appropriate Lie algebras [8, 9]. The simplest R-matrices
can be constructed by a decomposition of a given Lie algebra into two Lie subalgebras. We
refer to [1, 6, 9] for abstract formalism of classical R-matrices on Lie algebras.

This paper is organized as follows: in the following section, we give a brief review of
the time scale calculus. In the third section, we define the δ-differentiation operator and
formulate the Leibniz rule for this operator. We introduce the Lie algebra as an algebra of
δ-differential operators equipped with the commutator, decompose it into two Lie subalgebras
and construct the simplest R-matrix on this algebra. We present the appropriate Lax operators
for infinite-field cases and the admissible finite-field restrictions generating consistent Lax
hierarchies. In the T = R case, or in the continuous limit of some special time scales,
we observe that the algebra of δ-differential operators turns out to be the algebra of pseudo-
differential operators. Next, we formulate and prove the property of the algebra of δ-differential
operators. This property allows us to obtain natural constraints which are fulfilled by finite-
field restrictions. Therefore, the source of the constraints, obtained in the Burgers equations
and KdV hierarchy on time scales in [4], is established. We end up this section with the
construction of the recursion operators by means of the method presented in [10]. In the
fourth section, we illustrate two infinite-field integrable hierarchies on time scales which
are �-differential counterparts of Kadomtsev–Petviashvili (KP) and modified Kadomtsev–
Petviashvili (mKP) hierarchies. In the last section, we present finite-field restrictions which
are difference counterparts of Ablowitz–Kaup–Newell–Segur (AKNS) and Kaup–Broer (KB)
hierarchies with their recursion operators.

2. Preliminaries

In this section, we give a brief introduction to the concept of time scale. We refer to [11, 12]
for the basic definitions and general theory of time scale. What we mean by a time scale T is
an arbitrary nonempty closed subset of real numbers. The time scale calculus was introduced
by Aulbach and Hilger [13, 14] in order to unify all possible intervals on the real line R, such
as continuous (whole) R, discrete Z and q-discrete Kq(Kq = qZ ∪ {0} ≡ {qk : k ∈ Z} ∪ {0},
where q �= 1 is a fixed real number) intervals. For the definition of the derivative in time
scales, we use forward and backward jump operators which are defined as follows.

Definition 2.1. For x ∈ T, the forward jump operator σ : T → T is defined by

σ(x) = inf{y ∈ T : y > x}, (2.1)

while the backward jump operator ρ : T → T is defined by

ρ(x) = sup{y ∈ T : y < x}. (2.2)

We set in addition σ(max T) = max T if there exists a finite max T, and ρ(min T) = min T if
there exists a finite min T.

The jump operators σ and ρ allow the classification of points in a time scale in
the following way: x is called right dense, right scattered, left dense, left scattered,
dense and isolated if σ(x) = x, σ (x) > x, ρ(x) = x, ρ(x) < x, σ (x) = ρ(x) = x

and ρ(x) < x < σ(x), respectively. Moreover, we define the graininess functions
µ, ν : T → [0,∞) as follows:

µ(x) = σ(x) − x, ν(x) = x − ρ(x), for all x ∈ T. (2.3)
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In the literature, T
κ denotes a set consisting of T except for a possible left-scattered

maximal point while Tκ stands for a set of points of T except for a possible right-scattered
minimal point.

Definition 2.2. Let f : T → R be a function on a time scale T. For x ∈ T
κ , the delta

derivative of f , denoted by �f , is defined as

�f (x) = lim
s→x

f (σ (x)) − f (s)

σ (x) − s
, s ∈ T, (2.4)

while for x ∈ Tκ ,∇-derivative of f , denoted by ∇f , is defined as

∇f (x) = lim
s→x

f (s) − f (ρ(x))

s − ρ(x)
, s ∈ T, (2.5)

provided that the limits exist. A function f : T → R is said to be �-smooth (∇-smooth) if it
is infinitely �-differentiable (∇-differentiable).

Remark 2.3. Let f : T → R be �-differentiable on T
κ . If x is right-scattered, then the

definition (2.4) turns out to be

�f (x) = f (σ(x)) − f (x)

µ(x)
,

while if x is right-dense, (2.4) implies that

�f (x) = lim
s→x

f (x) − f (s)

x − s
, s ∈ T.

Similarly, let f : T → R be ∇-differentiable on Tκ . If x is left-scattered, then the definition
(2.5) turns out to be

∇f (x) = f (x) − f (ρ(x))

ν(x)
,

while if x is left-dense, (2.5) yields

∇f (x) = lim
s→x

f (x) − f (s)

x − s
, s ∈ T.

In order to be more precise, we present � and ∇ derivatives for some special time scales.
If T = R, then �- and ∇-derivatives become ordinary derivatives, i.e.

�f (x) = ∇f (x) = df (x)

dx
.

If T = �Z, then

�f (x) = f (x + �) − f (x)

�
and ∇f (x) = f (x) − f (x − �)

�
.

If T = Kq , then

�f (x) = f (qx) − f (x)

(q − 1)x
and ∇f (x) = f (x) − f (q−1x)

(1 − q−1)x
,

for all x �= 0, and

�f (0) = ∇f (0) = lim
s→0

f (s) − f (0)

s
, s ∈ Kq,

provided that this limit exists.
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As an important property of �-differentiation on T, we give the product rule. If
f, g : T → R are �-differentiable functions at x ∈ T

κ , then their product is also �-
differentiable and the following Lebniz-like rule holds:

�(fg)(x) = g(x)�f (x) + f (σ(x))�g(x)

= f (x)�g(x) + g(σ (x))�f (x). (2.6)

Besides, if f is a �-smooth function, then

f (σ(x)) = f (x) + µ(x)�f (x). (2.7)

If x ∈ T is right-dense, then µ(x) = 0 and the relation (2.7) is trivial.

Definition 2.4. A time scale T is regular if both of the following two conditions are satisfied:

(i) σ(ρ(x)) = x for all x ∈ T,
(ii) ρ(σ(x)) = x for all x ∈ T.

Set x∗ = min T if there exists a finite min T, and set x∗ = −∞ otherwise. Also set
x∗ = max T if there exists a finite max T, and set x∗ = ∞ otherwise.

Proposition 2.5 [4]. A time scale is regular if and only if the following two conditions hold:

(i) the point x∗ = min T is right-dense and the point x∗ = max T is left-dense;
(ii) each point of T\{x∗, x∗} is either two-sided dense or two-sided scattered.

In particular R, �Z (� �= 0) and Kq are regular time scales, as are [0, 1] and
[−1, 0] ∪ {1/k : k ∈ N} ∪ {k/(k + 1) : k ∈ N} ∪ [1, 2].

Throughout this work, let T be a regular time scale. By �, we denote the delta-
differentiation operator which assigns each �-differentiable function f : T → R to its
delta-derivative �(f ), defined by

[�(f )](x) = �f (x), for x ∈ T
κ . (2.8)

The shift operator E is defined by the formula

(Ef )(x) = f (σ(x)), x ∈ T. (2.9)

The inverse E−1 is defined by

(E−1f )(x) = f (σ−1(x)) = f (ρ(x)), (2.10)

for all x ∈ T. Note that E−1 exists only in the case of regular time scales and that in general
E and E−1 do not commute with � and ∇ operators.

Proposition 2.6 [15]. Let T be a regular time scale.

(i) If f : T → R is a �-smooth function on T
κ , then f is ∇-smooth and for all x ∈ Tκ ,

∇f (x) = E−1�f (x). (2.11)

(ii) If f : T → R is a ∇-smooth function on Tκ , then f is �-smooth and for all x ∈ T
κ ,

�f (x) = E∇f (x). (2.12)
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Thus the properties of �- and ∇-smoothness for functions on regular time scales are
equivalent.

In some special cases, by properly introducing the deformation parameter, it is possible
to consider a continuous limit of a time scale. For instance, the continuous limit of �Z is the
whole real line R, i.e.

T = �Z
h̄→0−−−−→ T = R; (2.13)

and the continuous limit of Kq is the closed half-line R+ ∪ {0}, thus

T = Kq

h̄→1−−−−→ T = R+ ∪ 0. (2.14)

For more about the calculus on time scales we refer the readers to [11, 12].

3. Algebra of δ-differential operators

3.1. Basic notions

In this section, we deal with the algebra of δ-differential operators defined on a regular time
scale T. We denote the delta-differentiation operator by δ instead of �, for convenience in the
operational relations. The operator δf which is a composition of δ and f , where f : T → R,
is introduced as follows:

δf := �f + E(f )δ, ∀ f. (3.1)

Note that, the definition (3.1) is consistent with the Lebniz-like rule on time scales (2.6).

Theorem 3.1. The Leibniz rule on time scales for the operator δ is given as follows.

(i) For n � 0:

δnf =
n∑

k=0

∑
i1+i2+···+ik+1=n−k

(�ik+1E�ikE . . .�i2E�i1)f δk, (3.2)

where iγ � 0 for all γ = 1, 2, . . . , k + 1. Here the formula includes all possible strings
containing n − k times � and k times E.

(ii) For n < 0:

δnf =
∞∑

k=−n

∑
i1+i2+···+ik+n+1=k

(−1)k+n(E−ik+n+1�E−ik+n� . . . E−i2�E−i1)f δ−k, (3.3)

where iγ > 0 for all γ = 1, 2, . . . , k + n + 1 > 0. Here the formula includes strings of
the length 2k + 2n + 1.

The above theorem is a straightforward consequence of definition (3.1). Note that δ−1f

has the form of the formal series

δ−1f =
∞∑

k=0

(−1)k((E−1�)kE−1)f δ−k−1, (3.4)

which was previously given in [4], in terms of ∇. Thus (3.3) is the appropriate generalization
of (3.4).

5



J. Phys. A: Math. Theor. 41 (2008) 385203 M Błaszak et al

3.2. Classical R-matrix formalism

In order to construct integrable hierarchies of mutually commuting vector fields on time
scales, we deal with a systematic method, so-called the classical R-matrix formalism [1, 6, 9],
presented in the following scheme.

Let G be an algebra, with some associative multiplication operation, over a commutative
field K of complex or real numbers, based on an additional bilinear product given by a Lie
bracket [·, ·] : G → G, which is skew-symmetric and satisfies the Jacobi identity.

Definition 3.2. A linear map R : G → G such that the bracket

[a, b]R := [Ra, b] + [a,Rb] (3.5)

is a second Lie bracket on G, is called the classical R-matrix.

Skew-symmetry of (3.5) is obvious. When one checks the Jacobi identity of (3.5), it can
be clearly deduced that a sufficient condition for R to be a classical R-matrix is

[Ra,Rb] − R[a, b]R + α[a, b] = 0, (3.6)

where α ∈ K, called the Yang–Baxter equation YB(α). There are only two relevant cases of
YB(α), namely α �= 0 and α = 0, as Yang–Baxter equations for α �= 0 are equivalent up to
reparametrization.

Additionally, assume that the Lie bracket is a derivation of multiplication in G, i.e. the
relation

[a, bc] = b[a, c] + [a, b]c a, b, c ∈ G (3.7)

holds. If the Lie bracket is given by the commutator, i.e. [a, b] = ab − bc, the condition (3.7)
is satisfied automatically, since G is associative.

Proposition 3.3. Let G be a Lie algebra fulfilling all the above assumptions and R be the
classical R-matrix satisfying the Yang–Baxter equation, YB(α). Then the power functions Ln

on G, L ∈ G and n ∈ Z+, generate the so-called Lax hierarchy
dL

dtn
= [R(Ln), L], (3.8)

of pairwise commuting vector fields on G. Here, tn’s are related evolution parameters.
We additionally assume that R commutes with derivatives with respect to these evolution
parameters.

Proof. It is clear that the power functions on G are well defined. Then

(Ltm)tn − (Ltn)tm = [RLm,L]tn − [RLn,L]tm
= [(RLm)tn − (RLn)tm, L] + [RLm, [RLn,L]] − [RLn, [RLm,L]]

= [(RLm)tn − (RLn)tm + [RLm,RLn], L].

Hence, the vector fields (3.8) mutually commute if the so-called zero-curvature (or Zakharov–
Shabat) equations

(RLm)tn − (RLn)tm + [RLm,RLn] = 0

are satisfied. From (3.8) and by the Leibniz rule (3.7) we have that (Lm)tn = [RLn,Lm].
Using the Yang–Baxter equation for R and the fact that R commutes with ∂tn , we deduce

R(Lm)tn − R(Ln)tm + [RLm,RLn]

= R[RLn,Lm] − R[RLm,Ln] + [RLm,RLn]

= [RLm,RLn] − R[Lm,Ln]R = −α[Lm,Ln] = 0.

Hence, the vector fields commute pairwise. �

6
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In practice the powers of Lax operators in (3.8) are fractional. Note that, the Yang–
Baxter equation is a sufficient condition for mutual commutation of vector fields (3.8), but not
necessary. Thus choosing an algebra G properly, the Lax hierarchy yields abstract integrable
systems. In practice, the element L of G must be appropriately chosen, in such a way that the
evolution systems (3.8) are consistent on the subspace of G.

3.3. Classical R-matrix on time scales

We introduce the algebra G as an algebra of the formal Laurent series of (pseudo-) δ-differential
operators equipped with the commutator, and define its decomposition such as

G = G�k ⊕ G<k =
⎧⎨
⎩

∑
i�k

ui(x)δi

⎫⎬
⎭ ⊕

{∑
i<k

ui(x)δi

}
, (3.9)

where ui : T → K are �-smooth functions. The subspaces G�k,G<k are closed Lie
subalgebras of G only if k = 0, 1. Thus, we define the classical R-matrix in the following
form:

R := 1
2 (P�k − P<k) k = 0, 1, (3.10)

where P�k and P<k are the projections onto G�k and G<k , respectively. Since the classical
R-matrices (3.10) are defined through the projections onto Lie subalgebras, they satisfy the
Yang–Baxter equation (3.6) for α = 1

4 .
Let L ∈ G be given in the form

L = uNδN + uN−1δ
N−1 + · · · + u1δ + u0 + u−1δ

−1 + · · · , (3.11)

where ui are dynamical fields depending additionally on the evolution parameters tn. Thus,
the Lax hierarchy (3.8), based on (3.10) and in general generated by fractional powers of L,
turns out to be

dL

dtn
= [(L

n
N )�k, L] = −[(L

n
N )<k, L] k = 0, 1 n ∈ Z+. (3.12)

Proposition 3.3 implies that the hierarchy (3.12) is the infinite hierarchy of mutually commuting
vector fields and represents (1 + 1)-dimensional integrable �-differential systems on a time
scale T, including the time variables tn and space variable x ∈ T.

Analyzing (3.12) for L given by (3.11), in the case of k = 0, one finds that (uN)t = 0 and
(uN−1)t = µ(. . .) (see also remark 4.1). Similarly for k = 1, we have (uN)t = µ(. . .) (see
also remark 4.2). Hence, the appropriate Lax operators, yielding consistent Lax hierarchies
(3.12), are in the following form:

k = 0 : L = cNδN + ũN−1δ
N−1 + · · · + u1δ

1 + u0 + u−1δ
−1 + · · · (3.13)

k = 1 : L = ũNδN + uN−1δ
N−1 + · · · + u1δ

1 + u0 + u−1δ
−1 + · · · , (3.14)

where cN is a time-independent field and fields ũN−1, ũN are time-independent for dense
x ∈ T, as at these points µ = 0. This is the reason why they are distinguished by a tilde mark.

Nevertheless, we are interested in finite-field integrable systems on time scales. Thus, in
order to work with a finite number of fields, we should impose some restrictions on (3.13) and
(3.14) in such a way that the commutator on the right-hand side of the Lax equation (3.12)
does not produce terms not contained in the left-hand side of the Lax equation. To be more
precise, the left- and right-hand side of (3.12) span the same subspace of G. From this purpose,

7
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in the case of k = 0, one finds the general admissible form of the finite-field Lax operator
given by

L = cNδN + ũN−1δ
N−1 + · · · + u1δ + u0 +

∑
s

ψsδ
−1ϕs, (3.15)

with further restriction

L = cNδN + ũN−1δ
N−1 + · · · + u1δ + u0. (3.16)

In the case of k = 1, the general admissible Lax operator has the form

L = ũNδN + uN−1δ
N−1 + · · · + u1δ + u0 + δ−1u−1 +

∑
s

ψsδ
−1ϕs, (3.17)

and further restrictions are

L = ũNδN + uN−1δ
N−1 + · · · + u1δ + u0 + δ−1u−1 (3.18)

L = ũNδN + uN−1δ
N−1 + · · · + u1δ + u0 (3.19)

L = ũNδN + uN−1δ
N−1 + · · · + u1δ. (3.20)

In the above Lax operators cN is a time-independent field for all x ∈ T and ũN−1, ũN are
time-independent at dense points from a time scale. We also assume that the sum

∑
s is finite.

In general, for an arbitrary regular time scale T, the Lax hierarchies (3.12) represent
hierarchies of soliton-like integrable �-differential systems. For instance, when T = �Z or
Kq , the hierarchies (3.12) are those of lattice and q-deformed (-like) (discrete) soliton systems,
respectively. In particular, for the case of T = R, i.e. the continuous time scale on the whole
R, the Lax hierarchies are those of field soliton systems. In some cases, field soliton systems
can also be obtained from the continuous limit of integrable systems on time scales (see (2.13)
and (2.14)).

In the continuous time scale, the algebra of δ-differential operators (3.9) turns out to be
the algebra of pseudo-differential operators

G = G�k ⊕ G<k =
⎧⎨
⎩

∑
i�k

ui(x)∂i

⎫⎬
⎭ ⊕

{∑
i<k

ui(x)∂i

}
, (3.21)

where ∂ is such that ∂u = ∂xu + u∂ = ux + u∂ . The above decomposition is valid only if
k = 0, 1 and 2. Thus, in the general theory of integrable systems on time scales, we loose one
case in contrast to the ordinary soliton systems constructed by means of pseudo-differential
operators. This follows from the fact that, for k = 2, (3.9) does not decompose into Lie
subalgebras for an arbitrary time scale. For appropriate Lax operators, finite-field restrictions
and more information about the algebra of pseudo-differential operators, we refer the reader
to [1, 6, 16, 17]. Note that the fields ψs and ϕs in (3.15) and (3.17) are special dynamical
fields in the case of the algebra of pseudo-differential operators. They are the so-called source
terms, as ψs and ϕs are eigenfunctions and adjoint-eigenfunctions, respectively, of the Lax
hierarchy (3.12) [17].

It turns out that there are constraints between dynamical fields of the admissible finite-
field Lax restrictions (3.15)–(3.18) fulfilling (3.12). We give these constraints in the following
theorem, which is a consequence of the property of the algebra of δ-differential operators.
This property is illustrated in the following lemma:

8
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Lemma 3.4. Consider the equality

δrF =
r∑

i=0

Ciδ
r−i , r > 0. (3.22)

Then the following relation:
r∑

i=0

(−µ)iCi = F (3.23)

is valid.

Proof. We make use of induction. Assume that (3.23) holds for r. Then

δr+1F = δr(EF)δ + δr�F =
r∑

i=0

Aiδ
r−i+1 +

r∑
i=0

Biδ
r−i =

r+1∑
i=0

Ciδ
r+1−i . (3.24)

By the assumption we have
∑r

i=0(−µ)iAi = EF and
∑r

i=0(−µ)iBi = �F . Hence

r+1∑
i=0

(−µ)iCi =
r∑

i=0

(−µ)(i+1)Bi +
r∑

i=0

(−µ)iAi = −µ�F + EF = F. (3.25)

�

Let us explain the source of lemma 3.4. Consider the equality

A =
∑
i�0

aiδ
i = 0, (3.26)

where the sum is finite, and A is a purely δ-differential operator. We expand A with respect to
the shift operator E : Eu = E(u)E . From the relation (2.7) we have

E = 1 + µδ. (3.27)

The equality from lemma 3.4 is trivially satisfied for dense x ∈ T, since in this case µ = 0.
Thus, it is enough to consider remaining points in a time scale so assume that µ �= 0. Hence,
from (3.27), we have the formula

δ = µ−1E − µ−1. (3.28)

Thus, using (3.28) the relation (3.26) can be rewritten as

A =
∑

i

a′
iE i = 0. (3.29)

Obviously, it must hold for terms of all orders. The equality for the zero-order terms, i.e.
a′

0 = 0, can be simply obtained by replacing δ with −µ−1 in (3.26). The same substitution in
(3.22) allows us to find

(−µ)−rF =
r∑

i=0

Ci(−µ)−r+i , (3.30)

which is equivalent to (3.23).
The above procedure can also be extended to operators A that are not purely δ-differential

and contain finitely many terms with δ−1, δ−2, . . . . As an illustration consider the equality

[Aδr, ψδ−1ϕ] =
r−1∑
i=0

Ciδ
r−1−i + Ĉrδ

−1ϕ + ψδ−1Cr. (3.31)

9



J. Phys. A: Math. Theor. 41 (2008) 385203 M Błaszak et al

The above equality is well formulated since it follows immediately from the definition and the
property of the δ operator. Replacing δ with −µ−1, the commutator vanishes, and we have

0 =
r−1∑
i=0

Ci(−µ)−r+1+i + Ĉr (−µ)ϕ + ψ(−µ)Cr ⇐⇒ (3.32)

r−1∑
i=0

(−µ)iCi + (−µ)r(Ĉrϕ + ψCr) = 0. (3.33)

Straightforward consequence of such a behavior of δ-differential operators is the next theorem.

Theorem 3.5

(i) The case k = 0. The constraint between dynamical fields of (3.15), generating Lax
hierarchy (3.12), has the form

(−µ)N−1 dũN−1

dtn
+

N−2∑
i=0

(−µ)i
dui

dtn
− µ

∑
s

d(ψsϕs)

dtn
= 0

�⇒ (−µ)N−1ũN−1 +
N−2∑
i=0

(−µ)iui − µ
∑

s

ψsϕs = an, (3.34)

where n ∈ Z+ and an is a time-independent function.
(ii) The case k = 1. The constraint between dynamical fields of (3.17), generating (3.12),

has the form

(−µ)N
dũN

dtn
+

N−1∑
i=−1

(−µ)i
dui

dtn
− µ

∑
s

d(ψsϕs)

dtn
= 0

�⇒ (−µ)NũN +
N−1∑
i=−1

(−µ)iui − µ
∑

s

ψsϕs = an, (3.35)

where n ∈ Z+ and an is a time-independent function.

Proof. We already know that the Lax operators (3.15) and (3.17) generate consistent Lax
hierarchies (3.12). Thus, the right-hand side of (3.12) can be represented in the form of Ltn .
Replacing δ with −µ−1 in (3.12), we have

Ltn |δ=−µ−1 = [(Ln)�k, L]|δ=−µ−1 = 0. (3.36)

Hence, the constraints (3.34) and (3.35) follow. �

The above theorem can be generalized to further restrictions. As a consequence, the
constraints (3.34) or (3.35) with fixed common value of all an are valid for the whole Lax
hierarchy (3.12).

3.4. Recursion operators

One of the characteristic features of integrable systems possessing infinite-hierarchy of
mutually commuting symmetries is the existence of a recursion operator [1, 18]. A recursion
operator of a given system is an operator of such property that when it acts on one symmetry
of the system considered, it produces another symmetry. Gürses et al [10] presented a general
and very efficient method of constructing recursion operators for Lax hierarchies. Among

10
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others, the authors illustrated the method by applying it to finite-field reductions of the KP
hierarchy. In [19] the method was applied to the reductions of the modified KP hierarchy as
well as to the lattice systems. Our further considerations are based on the scheme from [10]
and [19].

The recursion operator � has the following property:

�(Ltn) = Ltn+N
, n ∈ Z+,

and hence it allows the reconstruction of the whole hierarchy (3.12) when applied to the first
(N − 1) symmetries.

Lemma 3.6

(i) The case k = 0. Let the Lax operator be given in the general form (3.15). Then, the
recursion operator of the related Lax hierarchy can be constructed solving

Ltn+N
= LtnL + [R,L] (3.37)

with the remainder in the form

R = aN−1δ
N−1 + · · · + a0 +

∑
s

a−1,sδ
−1ϕs, (3.38)

where N is the highest order of L.

(ii) The case k = 1. Similarly for the Lax operator (3.17), the recursion operator can be
constructed from (3.37) with

R = aNδN + · · · + a0 +
∑

s

a−1,sδ
−1ϕs. (3.39)

Proof. Consider the case k = 0. Then for (3.15) we have

(L
n+N
N )�0 = ((L

n
N )�0L)�0 + ((L

n
N )<0L)�0

= (L
n
N )�0L −

∑
s

[(L
n
N )�0ψs]0δ

−1ϕs + ((L
n
N )<0L)�0

= (L
n
N )�0L + R,

where
[∑

i aδi
]

0 = a0 and R is given by (3.38). Similarly for k = 1, we have(
L

n+N
N

)
�1 = ((L

n
N )�1L)�1 + ((L

n
N )<1L)�1

= (L
n
N )�1L − [(L

n
N )�1L]0 −

∑
s

[(L
n
N )�0ψs]0δ

−1ϕs + ((L
n
N )<1L)�1

= (L
n
N )�1L + R,

where R has the form (3.39). Thus, in both cases (3.37) follows from (3.12). Hence we can
extract the recursion operator from (3.37). �

Note that in general, recursion operators on time scales are non-local. This means that
they contain non-local terms with �−1 being the formal inverse of � operator. However, such
recursion operators acting on an appropriate domain produce only local hierarchies.

11
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4. Infinite-field integrable systems on time scales

4.1. �-differential KP, k = 0:

Consider the following infinite-field Lax operator:

L = δ + ũ0 +
∑
i�1

uiδ
−i , (4.1)

which generates the Lax hierarchy (3.12) as the �-differential counterpart of the Kadomtsev–
Petviashvili (KP) hierarchy.

For (L)�0 = δ + ũ0, the first flow is given by

dũ0

dt1
= µ�u1

dui

dt1
=

i−1∑
k=0

(−1)k+1ui−k

∑
j1+j2+···+jk+1=i

(E−jk+1�E−jk� . . . E−j2�E−j1)ũ0

+ µ�ui+1 + �ui + uiũ0 ∀ i > 0, (4.2)

where jγ > 0 for all γ � 1.
For (L2)�0 = δ2 + ξδ + η, where

ξ := Eũ0 + ũ0 η := �ũ0 + ũ2
0 + u1 + Eu1, (4.3)

one calculates the second flow
du0

dt2
= µ�(E + 1)u2 + µ�(�u1 + u1ũ0 + u1E

−1ũ0)

dui

dt2
=

i−1∑
k=−1

(−1)k+2ui−k

∑
j1+j2+···+jk+2=i+1

(E−jk+2�E−jk+1� . . . E−j2�E−j1)ξ

+
i−1∑
k=0

(−1)k+1ui−k

∑
j1+j2+···+jk+1=i

(E−jk+1�E−jk� . . . E−j2�E−j1)η

+ �2ui + (E� + �E)ui+1 + µ�(E + 1)ui+2 + ξ(�ui + Eui+1) + ηui, (4.4)

where jγ > 0 for all γ � 1.
The simplest case in (2 + 1) dimensions: we rewrite the first two members of the first

flow by setting ũ0 = w and t1 = y and the first member of the second flow by setting t2 = t .
Since E and � do not commute, note that in the calculations up to the last step, we use E − 1
instead of µ�, to avoid confusion:

wy = (E − 1)u1, (4.5)

u1,y = (E − 1)u2 + �u1 + u1(1 − E−1)(w), (4.6)

wt = (E2 − 1)u2 + (E − 1)(�u1 + u1w + u1E
−1(w)). (4.7)

Applying E + 1 to (4.6) from the left yields

(E2 − 1)u2 = (E + 1)u1,y − (E + 1)�u1 − (E − 1)u1(1 − E−1)w. (4.8)

Applying (E − 1) to (4.7) from the left and substituting (4.5) and (4.8) into the new derived
equation we finally obtain the (2 + 1)-dimensional one-field system of the form

µ�wt = (E + 1)wyy − 2�wy + 2µ�(wwy), (4.9)

12
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which does not have a continuous counterpart. For the case of T = hZ, one can show that
(4.9) is equivalent to the (2 + 1)-dimensional Toda lattice system.

The �-differential analog of one-field continuous KP equation is too complicated to write
explicitly.

Remark 4.1. Here we want to illustrate the behavior of ũ0 in all symmetries of the �-
differential KP hierarchy. Let (Ln)<0 = ∑

i�1 v
(n)
i δ−i , then by the right-hand side of the Lax

equation (3.12), we obtain the first members of all flows

dũ0

dtn
= µ�v

(n)
1 . (4.10)

Thus ũ0 is time-independent for dense x ∈ T since µ = 0. Hence when T = R, ũ0 appears to
be a constant.

In the T = R case, or in the continuous limit of some special time scales, with ũ0 = 0,
the Lax operator (4.1) turns out to be a Laurent series of pseudo-differential operators

L = ∂ +
∑
i�1

ui∂
−i . (4.11)

Moreover, the first flow (4.2) turns out to be exactly the first flow of the KP system

dui

dt1
= ui,x, ∀ i � 1 (4.12)

while the second flow (4.4) becomes exactly the second flow of the KP system

dui

dt2
= (ui)2x + 2(ui+1)x + 2

i−1∑
k=1

(−1)k+1

(
i − 1

k

)
ui−k(u1)kx ∀ i � 1. (4.13)

4.2. �-differential mKP, k = 1:

Consider the Lax operator of the form

L = ũ−1δ +
∑
i�0

uiδ
−i (4.14)

which generates the �-differential counterpart of the modified Kadomstsev–Petviashvili
(mKP) hierarchy.

Then, (L)�1 = ũ−1δ implies the first flow

dũ−1

dt1
= µũ−1�u0

dui

dt1
=

i−1∑
k=−1

(−1)k+2ui−k

∑
j1+j2+···+jk+2=i+1

(E−jk+2�E−jk+1� . . . E−j2�E−j1)ũ−1

+ ũ−1Eui+1 + ũ−1�ui ∀ i � 0, (4.15)

where jγ > 0, γ = 1, 2, . . . , k + 2.
Next, for (L2)�1 = ξδ2 + ηδ, where

ξ := ũ−1Eũ−1, η := ũ−1�ũ−1 + ũ−1Eu0 + u0ũ−1, (4.16)

13
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we have the second flow as follows:

dũ−1

dt2
= ξ(E�u0 + E2(u1)) + µũ−1�u2

0 − u1E
−1ξ − ũ2

−1�u0

dui

dt2
=

i−1∑
k=−2

(−1)k+3ui−k

∑
j1+j2+···+jk+3=i+2

(E−jk+3�E−jk+2� . . . �E−j1)ξ

+
i−1∑

k=−1

(−1)k+2ui−k

∑
j1+j2+···+jk+2=i+1

(E−jk+2�E−jk+1� . . . �E−j1)η

+ ξ(�2ui + (E� + �E)ui+1 + E2ui+2) + η(�ui + Eui+1), (4.17)

where i � 0 and jγ > 0 for all γ � 1.

Remark 4.2. Similarly in order to illustrate the behavior of ũ−1 in all symmetries of the
�-differential mKP hierarchy let us consider (Ln)<1 = ∑

i�0 v
(n)
i δ−i . Then we obtain the

first members of all flows

dũ−1

dtn
= µũ−1�v

(n)
0 . (4.18)

Thus ũ−1 is time-independent for dense x ∈ T. Hence when T = R, ũ−1 appears to be a
constant.

In the T = R case, or in the continuous limit of some special time scales, with ũ−1 = 1,
the Lax operator (4.14) turns out to be the pseudo-differential operator

L = ∂ +
∑
i�0

ui∂
−i . (4.19)

Furthermore, the system of equations (4.15) is exactly the first flow of the mKP system

dui

dt1
= ui,x, ∀ i � 0, (4.20)

while the second flow (4.17) turns out to be the second flow of the mKP system

dui

dt2
= (ui)2x + 2(ui+1)x + 2u0(ui)x + 2u0ui+1

+ 2
i∑

k=0

(−1)k+1

(
i

k

)
ui+1−k(u0)kx ∀ i � 0. (4.21)

5. Finite-field integrable systems on time scales

5.1. �-differential AKNS, k = 0:

Let the Lax operator (3.15) for N = 1 and c1 = 1 be of the form

L = δ + ũ + ψδ−1ϕ. (5.1)

The constraint (3.34) between fields, with an = 0, becomes

ũ = µψϕ. (5.2)
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For (L)�0 = δ + ũ, one finds the first flow

dũ

dt1
= µ�(ψE−1ϕ),

dψ

dt1
= ũψ + �ψ, (5.3)

dϕ

dt1
= −ũϕ + �E−1ϕ.

Eliminating field ũ by (5.2) we have

dψ

dt1
= µψ2ϕ + �ψ,

dϕ

dt1
= −µϕ2ψ + �E−1ϕ. (5.4)

Next we calculate (L2)�0 = δ2 + ξδ + η where

ξ := (E + 1)ũ, η := �ũ + ũ2 + ϕE(ψ) + ψE−1(ϕ). (5.5)

Thus, the second flow takes the form

dũ

dt2
= µ�[�(ψE−1(ϕ)) + ψE−1(ũϕ) + ũψE−1ϕ] − µ�(E + 1)ψE−1�E−1(ϕ)

dψ

dt2
= ψη + ξ�ψ + �2ψ (5.6)

dϕ

dt2
= −ϕη + �E−1(ξϕ) − (�E−1)2ϕ.

By the use of the constraint (5.2), the second flow can be written as

dψ

dt2
= ψ(�µψϕ + (µψϕ)2 + ϕE(ψ) + ψE−1(ϕ)) + (E + 1)µψϕ�ψ + �2ψ,

(5.7)
dϕ

dt2
= −ϕ(�µψϕ + (µψϕ)2 + ϕE(ψ) + ψE−1(ϕ)) + �E−1(ϕ(E + 1)µψϕ) − (�E−1)2ϕ.

In order to obtain the recursion operator one finds that for the Lax operator (5.1) the
appropriate reminder (3.38) has the form

R = �−1(µ−1ũtn ) − ψtnδ
−1ϕ. (5.8)

Then, (3.37) implies the following recursion formula as:⎛
⎝ ũ

ψ

ϕ

⎞
⎠

tn+1

=

⎛
⎜⎝

ũ − µ−1 φE ψE−1

ψ + ψ�−1µ−1 � + ũ + ψ�−1ϕ ψ�−1ψ

−ϕ�−1µ−1 −ϕE�−1ϕ ũ − �E−1 − ϕE�−1ψ

⎞
⎟⎠

⎛
⎝ũ

ψ

ϕ

⎞
⎠

tn

(5.9)

valid for isolated points x ∈ T, i.e. when µ �= 0. For dense points one must use its reduction
by constraint (5.2)(

ψ

ϕ

)
tn+1

=
(

� + 2µψϕ + 2ψ�−1ϕ µψ2 + 2ψ�−1ψ

−µϕ2 − 2ϕ�−1ϕ −�E−1 − 2ϕ�−1ψ

)(
ψ

ϕ

)
tn

. (5.10)

In the T = R case, or in the continuous limit of some special time scales, with the choice
ũ = 0, the Lax operator (5.1) takes the form L = ∂ + ψ∂−1ϕ. Then, the continuous limits of
(5.3) and (5.6), respectively, imply that the first flow is the translational symmetry

dψ

dt1
= ψx

dϕ

dt1
= ϕx (5.11)
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and the first non-trivial equation from the hierarchy is the AKNS equation
dψ

dt2
= ψxx + 2ψ2ϕ,

dϕ

dt2
= −ϕxx − 2ϕ2ψ. (5.12)

For this special case the recursion formula (5.10) is of the following form:(
ψ

ϕ

)
tn+1

=
(

∂x + 2ψ∂−1
x ϕ 2ψ∂−1

x ψ

−2ϕ∂−1
x ϕ −∂x − 2ϕ∂−1

x ψ

) (
ψ

ϕ

)
tn

. (5.13)

5.2. �-differential Kaup–Broer, k = 1:

From the admissible finite-field restrictions (3.17), we consider the following simplest Lax
operator:

L = ũδ + v + δ−1w. (5.14)

The constraint (3.35), with an = 1, implies

ũ = 1 + µv − µ2w. (5.15)

Then, for (L)�1 = ũδ, the first flow is given as

dũ

dt1
= µũ�v,

dv

dt1
= ũ�v + µ�E−1(ũw), (5.16)

dw

dt1
= �E−1(ũw).

By the constraint (5.15) one can rewrite the first flow as
dv

dt1
= (1 + µv − µ2w)�v + µ�E−1(w(1 + µv − µ2w)),

(5.17)
dw

dt1
= �E−1(w(1 + µv − µ2w)).

Next, we calculate (L2)�1 = ξδ2 + ηδ, where

ξ := ũEũ, η := ũ�ũ + ũEv + vũ, (5.18)

that yields the second flow
dũ

dt2
= µũ�(E−1 + 1)ũw + µũ�v2 + µũ�(ũ�v),

dv

dt2
= ξ(�2v + �w) + µ�E−1(wη) + E−1�E−1(wξ) + η�v, (5.19)

dw

dt2
= −�E−1�E−1(wξ) + �E−1(wη).

One can rewrite the above system reducing it by the constraint, but the final equation has a
complicated form.

For the Lax operator (5.14) the appropriate reminder (3.39) is given by

R = ũ�−1(µũ)−1ũtnδ − vtn − �−1wtn . (5.20)

Hence, from (3.37) we have the following, valid when µ �= 0, recursion formula,⎛
⎝ ũ

v

w

⎞
⎠

tn+1

=
⎛
⎝Rũũ ũE µũ

Rvũ v + ũ� (1 + E−1)ũ

Rwũ w −�E−1ũ + v − µw

⎞
⎠

⎛
⎝ ũ

v

w

⎞
⎠

tn

, (5.21)
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where

Rũũ = E(v) − µ−1ũ + µũ�(v)�−1(µũ)−1

Rvũ = �(v) + w + ũ�(v)�−1(µũ)−1 + (1 − E−1)ũw�−1(µũ)−1 (5.22)

Rwũ = �E−1ũw�−1(µũ)−1.

Its reduction by the constraint (5.15) is(
v

w

)
tn+1

=
(

v + ũ� + Rvũµ (1 + E−1)ũ − Rvũµ
2

w + Rwũµ −�E−1ũ + v − µw − Rwũµ
2

) (
v

w

)
tn

, (5.23)

with ũ given by (5.15).
In the case of T = R, or in the continuous limit of some special time scales, with the

choice ũ = 1, the Lax operator (5.14) takes the form L = ∂ + v + ∂−1w. Then the similar
continuous analog allows us to obtain the first flow

dv

dt1
= vx,

dw

dt1
= wx, (5.24)

and the first non-trivial equation from the hierarchy is the Kaup–Broer equation

dv

dt2
= v2x + 2wx + 2vvx,

dw

dt2
= −w2x + 2(vw)x. (5.25)

For such special cases, the recursion formula (5.23) turns out to be(
v

w

)
tn+1

=
(

∂x + v + vx∂
−1
x 2

w + ∂xw∂−1
x −∂x + v

)(
v

w

)
tn

. (5.26)
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